
Anders Henrysson and Mark Ollila
Norrköping Visualization and Interaction Studio

University of Linköping, Norrköping Campus, Sweden

Hybrid representations - that of using image and procedural
methods to synthesize images. Procedural methods allow us to
describe media (2D images, 3D objects etc.) with very little
information and render it photorealistically. Since the procedure
is run on the client (for instance a PC or a mobile phone with
limited network), it makes sense to adapt the procedure to the
properties of the client.

The traditional usage of procedural methods has been to use low
level shading languages or specialized applications only running
one procedure and thus limiting the user to one category of media.
Even though a lot can be represented with procedural methods
there is a need to use traditional media representations (bitmaps,
polygons etc.) as well.

We have come up with a concept where we achieve all of the above
using hybrid representations. We have adopted an object based
media representation where an object can either be represented
with a procedure or its traditional representation. To keep the
application as small and flexible as possible, each procedure is
implemented as a library which is loaded when needed. The media
representation is written in XML to make it human readable and
easy to edit. The application is thus document driven where the
content of the XML document determines which libraries to be
loaded. The media objects resulting from the procedures are then
composited to the media representation preferred by the renderer
together with the non-procedural objects. The parameters in the
XML document are relative to parameters determined by the system
properties (resolution, performance etc.) and thus adapting the
procedures to the client. By mapping objects to individual libraries,
the architecture is easy to make multi-threaded and distributed.

The input to the procedures are in text-files pointed to in the XML
document and parsed by the procedure library. The procedures in
the example presented here include texture synthesis techniques
and Perlin noise cloud. To make the procedures adapt to the system
properties, the objects are re-rendered when the resolution is
changed. The bitmap object is simply scaled, but other objects are
recomputed. An array of the appropriate size is created in the main
application and a pointer to it is sent to the procedure along with
the name of the input file and the size of the region to be rendered.
The implementation is limited but shows the strength of the concept
and is a work in progress.

ADDITIONAL

SEND
PARAMS
TO LIBRARY

PARSE XML

COMPUTE PARAMETERS

THREADS
NETWORK
DISTRIBUTED

OBJECTS

LOAD NON

COMPOSITE OBJECTS

RENDER

PROCEDURAL

EXTERNAL
FILE

INTERNAL

SEND PARAMS

LOAD LIBRARY

UNLOAD LIBRARY

LOAD INPUT

PROCEDURE

CREATE OBJECT

XML

DTD

NON
PROCEDURAL
OBJECTS

EXTERNAL DATA

USER FEEDBACK

SYSTEM FEEDBACK

PERFORMANCE
ENVIRONMENT
RESOLUTION

QoS
SPEED
QUALITY

XML description:
<?xml version=’1.0' encoding=’utf-8'?>
<!DOCTYPE image SYSTEM “image.dtd”>
<image size_y=’550' size_x=’378'>
<region size_y=’100' size_x=’100' pos_y=’0' pos_x=’0'>
<procedure type=”cloud”>blaise.pcf</procedure>
</region>
<region size_y=’77' size_x=’49' pos_y=’23' pos_x=’51'>
<procedure type=”textureSynthesis”>blaise.tsf</procedure>
</region>
<region size_y=’23' size_x=’51' pos_y=’0' pos_x=’51'>
<procedure type=”bitmap”>top.png</procedure>
</region>
<region size_y=’60' size_x=’12' pos_y=’40' pos_x=’40'>
<procedure type=”bitmap”>left.png</procedure>
</region>
</image>
Parameter file cloud “blaise.pcf”:
4 #number of colors to form gradient
255 102 161 201 0 #R G B offset for color one
255 102 161 201 2 #R G B offset for color two
255 224 238 249 40 #R G B offset for color three
255 159 199 225 100 #R G B offset for color four
2 #number of ellipses
50 30 48 15 #x.center y.center x.radius y.radius for ellipse 1
50 60 48 15 #x.center y.center x.radius y.radius for ellipse 2
0.7 #whispiness
Parameterfile texture synthesis”blaise.tsf”:
1 #has target
blaise_t.jpg #target image
1 #number of input images
blaise_in_0_100.jpg#input image 1
0 100 #y,x coords for image 1 in the target image
12 #num: num x num = # of sample points region
30 #regsize: size of region to be quilted
0.45 #overlap: size of overlap between regions
0.85 #alpha:

Figure 2: From left moving clockwise across the top, we have two
bitmap Objects. We then have the sample texture and target image

where synthesis takes place. This is followed by the original
image, and the result of the hyrid rendering scheme.

Figure 1: System design of hybrid representations.

Combining Procedural, Polygonal, and Bitmap Representations using XML

304

